How to Photograph the Milky Way

How to Photograph the Milky Way

Tutorial recently updated! Wide field landscape astrophotography is an impressive form of photography, and it’s accessible to nearly everyone.

Astrophotography in its simplest form is increasing in accessibility, especially with today’s affordable, large sensor, high signal-to-noise ratio digital cameras. In my opinion, there are few photographs that have as much existential impact as a nighttime landscape against the Milky Way. Here, I will show you how to make an amazing photo of the Milky Way Galaxy with a minimum of effort and a minimum of equipment.


There are a few things that you will need. Here is a concise checklist of the most helpful things:

  • Digital Camera with Manual Controls
  • Wide Angle Lens
  • Tripod
  • Flashlight or Headlamp
  • Intervalometer Remote Timer (Optional)
  • Smartphone Star Map App (Optional)
  • Dark Location at a Dark Time of Night

Digital Camera with Manual Controls

It is a common misconception that you need an expensive camera and lens combination to make a great Milky Way photograph. You can make a Milky Way photograph with a cheap, used DSLR. Pretty much any DSLR or camera with a Micro 4/3 sensor or larger is more than capable of photographing the Milky Way, especially when paired with the right lens. A lot of new compact system cameras like the Fujifilm X-Series and the Olympus OM-D line of cameras are very capable at astrophotography. Newer cameras are generally better for their low noise at high ISO performance and larger sensor cameras will allow photographers to use larger lenses that collect more light. DSLRs are the most common high performance cameras available and they offer an excellent price-to-performance ratio.

If you’re interested, I personally use the following camera systems:

Even the Canon EOS M, which can be found for less than $300, is one of the cameras I use for making astrophotos.

Fast Wide Angle Lens

A “fast” wide angle lens is the most important piece of equipment that will make your Milky Way photograph the easiest to make. The important traits are a low aperture f/number rating and short focal length. The lower the f/number rating, the faster and better the lens will be for really dark shooting conditions. Most digital camera kits come with the ubiquitous 18-55mm f/3.5-5.6. The minimum f/number of that lens (at 18mm) is f/3.5 which is a little bit “slow” for Milky Way photography. You can squeeze by with a slower kit lens like the common 18-55mm, but keep in mind that you will actually see a tangible difference with a faster lens that has a lower f/number rating.

I recommend a wide angle with a focal length of about 35mm or less on full-frame cameras, 24mm or less on APS-C cameras and 16mm or less on Micro 4/3 cameras. The Milky Way is pretty huge and so a lens with a wide field of view will make it easier to capture as much of it as possible. The wider field of view will also allow us to use longer shutter times to gather more light. The shorter the focal length, the wider field of view of the lens. If you’re interested in the technical reasons for what makes a good lens for astrophotography, check out my guide on how to pick a lens for Milky Way photography.

My absolute favorite lenses to use for Milky Way photography are the following:

All of these lenses are relatively affordable and are excellent for nighttime landscape photography. They are available on a wide range of camera mounts including Canon, Nikon, Sony, Olympus, Fuji, and Samsung. You will be hard pressed to find better lenses for night photographs any price. For a more complete list of the best lenses for photographing the Milky Way on your camera system, check out my best lens lists:

Canon 6D

Canon EOS 6D with Rokinon 14mm/2.8 and 24mm/1.4 are my absolute favorite tools for astrophotography.


There’s nothing special to remember for your tripod choice, just make sure it’s stable enough for your camera and is light and compact enough that you’ll actually want to carry it around with you. It’s not very fun lugging around a heavy tripod, even if it could support an aircraft carrier. Sometimes, I even opt for a pocket tripod as a backup to my full-size one. I have made successful Milky Way photographs with tripods as small as the nearly pocket-sized UltraPod II. If you’re looking for a very affordable and high quality full-size tripod for your DSLR I highly recommend the cheap Dolica Proline GX. It’s just as good as the other aluminum offerings from the more expensive companies (Gitzo and Manfrotto) but costs much less and has all the same features. For more compact DSLRs and mirrorless cameras, I recommend the Dolica Ultra Compact TX. Finally, for the ultralight enthusiast, traveler or backpacker that wants the lightest possible setup with full functionality, I recommend the tripod that I personally use: the Sirui T-025X Carbon Fiber Tripod ( Amazon / B&H ).

Slik Tripod and Ultra Pod II

Make sure that your tripod is stable but light enough to enjoy carrying with you.


Since you’ll be in the dark, a headlamp is pretty much a necessity. I prefer an LED headlamp with a red “night vision” mode. This will allow you you use the light without ruining your night vision. I also recommend a headlamp over a handheld flashlight because it will keep both your hands free to handle your camera equipment.

Petzl headlamps are my favorite from experience. I’ve owned other, cheaper headlamps that have failed on me but the Petzl ones keep on working. I particularly like the Tikka Plus 2, Zipka Plus 2 and I personally use the Tikka XP2. They’re all 70 lumens or more, are water resistant and can be switched to night vision mode without needing to cycle through the white lighting modes. This control scheme makes it possible to turn on and off the red mode without blinding yourself with the white mode first. I’ve never had one fail on me, the batteries will last for over 7 days straight of continuous output and they do a great job of warning you when the batteries are low with a red blinking indicator. Even when they’re running out of juice, it will keep on lighting for an extended period of time at reduced output so that you aren’t left in the dark.

Petzl Headlamp

Petzl Tikka XP2 Headlamp is my personal choice.

Intervalometer Remote Timer (Optional)

An intervalometer will allow you to trigger your camera remotely without needing to touch the camera. This is particularly nice to prevent vibration in the camera that can add blurring or streaking in your images. An intervalometer will also allow you to make timelapse sequences and allows you to program exposures longer than 30 seconds when your camera is in Bulb (B) exposure mode. From experience, I particularly recommend the Neewer Intervalometers. They’re less than $20 and have never failed me. Plus, they use AAA batteries just like the my headlamp so I don’t need to carry two different types of batteries.

Check if your camera has a built-in interval timer too. Some models like the Nikon D7100 have the functionality built in which makes it great for timelapses. If you’re using a Canon EOS camera, I recommend checking out the Magic Lantern firmware hack. It will enable all kinds of extra functionality like a built-in intervalometer and programmable Bulb timer.

Neewer Intervalometer

I recommend the super cheap Neewer intervalometers.

Smartphone Star Map App (Optional)

I personally use and recommend Stellarium for Android or iOS.  Stellarium shows a map of the stars with the plane of the Milky Way in view so you can more easily figure out where to point your camera. There are also a number of free applications like Google Sky Map for Android or Night Sky Lite for iOS that will help you find out where the Milky Way is in the sky at any given time of year. The free apps work great if you’re just starting out. Two other great photo planning applications are PhotoPills for iOS and The Photographer’s Ephemeris for Android and iOS which will allow you to plan for the phase of the moon, moonrise, moonset, sunrise and sunset.

The brightest part of the Milky Way is near the constellations Sagittarius and Scorpius but those constellations aren’t completely visible all year or in all parts of the world. To find the plane of the Milky Way at any time of year and in any part of the world, you’ll want to look for which of these constellations will be visible on the night you take photographs:

  • Sagittarius
  • Scorpius
  • Scutum
  • Aquila
  • Cygnus
  • Cassiopeia
  • Perseus
  • Auriga
  • Orion
  • Canis Major

Use the app to familiarize yourself with where those constellations are. That’s where you will be pointing your camera. If you don’t have a smartphone, I recommend checking out the free and open source software Stellarium for Mac, Linux or PC.

Dark Location at a Dark Time of Night

Of all the items on the list above, a dark location is probably the hardest thing to find. Two-thirds of the United States population are unable to see the Milky Way Galaxy due to light pollution. Unless you are lucky enough to live in a remote rural location with super dark night skies, you will probably need to make a trek out somewhere relatively remote in order to photograph the Milky Way. This is a great opportunity to explore new places. If you live in North America, check out Dark Sky Finder, or the Clear Sky Charts on Both have light pollution maps and Clear Dark Sky has weather and seeing forecasts for locations with the darkest skies. If you live elsewhere in the world, check out The World Atlas of Artificial Night Sky Brightness and the Blue Marble Navigator. I recommend finding publicly accessible lands like national parks and state parks as they’re often located away from cities and usually feature unique and beautiful landscapes.

Once you pick your location, plan on venturing there some time between the last quarter and first quarter of the moon calendar, ideally during a new moon. This is not a hard rule, but the closer date to the new moon, the more time you will have during the night with dark, moonless skies.

Making the photo

Now that you have all your equipment, are in a beautiful outdoor location with dark skies and have located the Milky Way with your smartphone app, you are ready to make a photograph. There are a number of things that you’ll need to do to make a successful exposure of the Milky Way. Here’s a checklist of what we will cover.

  • Setup your Camera
  • Focusing in the Dark
  • Choosing your Exposure
  • Exposure Adjustment

Setup Your Camera

I am going to suggest some settings that will be a good ballpark start for your exposure. You may not even have to change them for your final exposure but that will depend on things like moonlight, light pollution, your camera, and your lens. We will start here and adjust accordingly. You should be familiar with each of these settings and how to change them. If any of these settings are unfamiliar to you, review your camera’s manual for how to change the setting.

  • Shoot in RAW recording mode
    • RAW image files contain more data than JPEG files and thus allow for greater flexibility in post-processing adjustments.
  • Zoom out to the widest field of view your lens supports (24mm or wider)
    • The wider field of view will reduce streaking of the stars due to Earth’s rotation and will allow us to capture as much of the Milky Way as possible.
  • Manual focus
    • Use manual focus (M or MF) mode on your lens and set it to the infinity mark if possible. We will focus more precisely later. 
  • Manual exposure
    • Set your exposure mode to Manual (M)
  • Enable long exposure noise reduction if available.
    • This will reduce grain on your photos by taking a second photograph without opening the shutter to record and subtract noise data from your image. Note that this will usually add additional wait time to each exposure before you will be able to use your camera again for the next exposure. If your camera takes particularly low noise images, such as a Canon 6D, you probably don’t need to enable this feature.
  • Enable the histogram in the image review.
    • This will allow us to see a graphic display of our exposure and adjust accordingly.
  • Use automatic white balance.
    • Many things like light pollution or moonlight can change the white balance of the image so just set it to auto. Since we’re shooting in RAW, we can make adjustments to the white balance later.

Exposure Settings

The exposure settings that I recommend in a dark sky area are dependent on the type of camera and lens that you are using. Use the calculator below to determine the exposure that I recommend you use initially. Once you take your first exposure, you can adjust as necessary based on your exposure histogram.

  • The shutter speed is calculated based on the focal length of your lens and the size of your camera’s sensor. Longer focal lengths and smaller sensors require shorter shutter speeds to prevent star trailing.
  • The f/number should generally be set to the lowest possible number, preferably f/2.8 or lower if your lens supports it. Lenses with f/numbers of f/4.0 or higher are not recommended.
  • The ISO is calculated based on your aperture and shutter speed but it’s a little dependent on the noise performance of your camera. Start with the calculator’s recommendation and adjust accordingly.

Visit my article on the Milky Way Exposure Calculator for a complete explanation of the calculations that are being used.

Focusing in the Dark

I like focusing before composition because it’s generally easier to focus your camera first, tape your focus ring, and then re-compose later. In general, you will want to make sure your lens is in manual focus mode (M or MF) and is focused at infinity. But rather than just setting the focusing ring to the infinity mark (on some lenses) and forgetting about it, we will want to make more precise focus adjustments to ensure the best possible photo quality. Here are a couple methods that I use to focus in the dark.

  • Manual focus with Live View
    • This is by far the most accurate method if your camera supports it. Enable live view on your camera and use the focus checking or the digital zoom function on a bright star to make the star appear like a pinpoint. I recommend centering the star in the frame before focusing on it to have the most even focus field. Note that you may need to change the Live View settings on your camera to “exposure simulation” or “manual,”  in order to be able to see stars on the LCD. If you cannot see stars in the LCD, try focusing on a flashlight at a distance like in the method below.
  • Auto focus or manual focus on a flashlight that is placed far away (greater than 100 feet or so)
    • This can be an easy way to get your camera to focus at close to infinity in the dark but can be difficult if you don’t have a helping hand to hold the flashlight for you. It’s often best to place a flashlight next to an object in your frame that is at a distance of 100 feet or greater, the farther the better but after about 150 feet or so, it makes less and less difference. Plus, walking back and forth 300 feet just to focus your camera can be a drag. As soon as you get focus confirmation on the lit object, switch the lens back to manual focus (MF) mode to lock the focus at infinity, being careful not to twist the focus ring and mess up your focusing work. A flashlight can also be helpful if you wish to instead focus on a foreground object rather than infinity.

Regardless of the method of focus, make a test shot of the stars with the exposure settings above to check your focus. Zoom the LCD all the way into the image review to make sure that the stars look like pinpoints, if they are out of focus circular blobs, re-focus and check again. Always zoom the LCD into the preview review to check the focus, don’t take the initial thumbnail at face value. Once your shots are in focus, a piece of electrical tape or gaffer’s tape between the focus ring and the lens body can help prevent you from bumping the focus.

Adjusting Exposure

The settings that you calculated above when we setup your camera should be a good start. Once you are satisfied with your focus and your framing, the next thing is optimizing your exposure. This is where we will review the camera’s histogram information (The histogram is usually available by pressing “INFO” or “Display” or Up/Down arrows when reviewing photos. It really depends on your camera so check your instruction manual.)  Typically we will desire a histogram that shows peaks toward the center of the graph from left to right. See below for examples of histograms for various exposures of the Milky Way.

how to read your camera's histogram

Try to push your camera to the limits of its light gathering capability without compromising quality. Check and re-check your image review, zoom in on the LCD to check focus, review the histogram for exposure information and re-compose your frame throughout the night. Once you find an exposure you like, you can usually maintain the same exposure throughout the night.

Post Processing

If your image was exposed correctly, you should need only a little bit of post processing. RAW images are typically pretty flat and require some post processing to make the photograph as high quality as possible. I personally use Adobe Lightroom to process my photographs. The RAW editor that came with your camera is probably just fine.

The thing to keep in mind here is that less is more. If you push the exposure of your photograph too much in post processing, you will often increase noise levels and reduce the quality of your photograph. For this reason, make your best effort to properly expose your photographs in the camera. There isn’t one right way to  process your photograph and my methods might not be best for your particular shot but in general, I focus on just three things:

  • White Balance
  • Exposure (Brightness)
  • Contrast (Curves)

Let’s take a look at an image as it came, straight from the camera.

RAW Exposure, Unedited

RAW Exposure, Unedited

White Balance

Apparently, the color temperature of the Milky Way is about 4840°K [pdf]. That said, I use about 3900°K  most of the time for my white balance setting but this may just be a personal preference. I don’t typically pre-set white balance on my camera when taking the shot. 90% of the time, I usually just leave it in auto white balance (AWB) and I tend to adjust white balance in post processing. Try  3900°K and adjust from there. I find that 4840°K is a little too yellow/orange in color. Other factors like the moon and the sun can affect your white balance. Even if both the moon and sun are set below the horizon, they will continue to turn the sky a blue tint even an hour or two after they set, forcing the white balance to a higher temperature Kelvin. Adjust until you have a nice neutral picture:

White Balance 3900K

White Balance 3900K

Exposure (Brightness)

Hopefully the exposure will require the least adjustment. (If you made a good exposure in the camera.) Here I will add about +0.5 Exposure Value (EV), which makes the photograph 50% brighter. Try to avoid adjusting more than +/-1.0 EV unless noise levels allow for it. You will discover that adjustments larger than +/-1.0 EV will usually increase noise levels. The amount of post exposure adjustment necessary will depend on your exposure in the camera.


Increased Brightness +0.5EV

Contrast (Curves)

Contrast is the final essential post processing adjustment to use. I tend to increase contrast as much as possible without blowing out highlight or shadow details. Curves adjustment allows for a more precise contrast adjustment of specific lightness values and is my choice for making detailed adjustments. With curves to can make just the darks darker and just the brights brighter. Lightroom also allows you to adjust only designated portions of an image using the graduated filter or adjustment brush tools.


Increased Contrast

That’s just about it! Even with a very limited set of tools, it’s possible to create some amazing photographs of our home galaxy.

This lesson should have give you the most basic information needed to make some amazing Milky Way photographs. You have the tools, now all you need to do is let your creativity go crazy. The cool part is that the challenge does not stop there. There are a plethora of more advanced and varied techniques and tools out there like image stacking, star tracking, time-lapse, light painting, and star-trails that will add new dimensions to your night images. Check the Tutorials section for more articles. 

Like this article?

You’ll love my project driven online class.

If you would like to learn night time astrophotography from me first hand, check out my workshops page.

25 Responses

  1. Brian July 27, 2013 / 8:28 pm

    Great information- Thank you! Can you give any tips in regards to how one goes about shooting the milky way with something in the foreground? (ex. tree, house, etc). I guess two photos need to be taken, one focusing in on the foreground item and the other focused on infinity (or close to it). Is this correct? How does one mesh the two together?


    • inorman September 5, 2013 / 10:19 pm

      Brian, I’m currently working on a post for just that. You can focus pull a shot and blend, but usually it’s easier to pick one or the other. That, or make sure your foreground object is far away enough. With a wide enough lens, your foreground objects don’t need to be too far away to also be at “infinity” focus.

  2. Darrin August 12, 2013 / 2:59 pm

    Thanks for the info. I was in Yosemite this past weekend. My photos are still sitting on the camera, but I want to make sure I am doing the right things from a processing standpoint. Very helpful.

  3. Jenell Larson August 16, 2013 / 3:49 pm

    Thank you for being so generous with all this information.

    • inorman September 5, 2013 / 1:39 pm

      Of course! I want to make sure anyone can learn to make astrophotos!

  4. Paul T September 1, 2013 / 10:33 am

    Thanks so much for this clean “checklist”. I’ve had several nights in the dark up in Kennedy Meadows in the Southern Sierras, and came home with some nice shots, including some Perseid meteors. Your set up help made it possible!!!

  5. John B September 5, 2013 / 11:09 am

    Can I use a Sigma 50mm f/1.4 lens in a pinch until I can get a 14 or 16mm lens?

    • inorman September 5, 2013 / 12:18 pm

      The Sigma 50mm f/1.4 should work fine for your early shots John. Because of the narrower angle of view, you may need to limit yourself to shorter shutter durations. You will start to see a little bit of star trailing with shutter durations longer than about 8 seconds. If you keep the lens wide open at f/1.4, and use ISO 6400, you should be able to use these shorter shutter durations while still collecting enough light. Finally, you may also need to be more careful with your framing because the angle of view is so narrow; definitely use Stellarium or a night sky smartphone app to familiarize yourself with where you should be pointing your lens. Go out and try it out!

    • John B September 6, 2013 / 5:37 am

      Thank you for your reply. I’ll give it a try and see what the results are. I’ll eventually be purchasing a 14mm f/2.8 Rokinon lens as described in the article above and hopefully get longer exposure times.

  6. erno james September 7, 2013 / 1:23 am

    Very helpful tips. I am heading up to Lake Tahoe this weekend to see what magic I can work with your advice. The app tip and white balance settings are exactly what I was “googling” for. Mucho obliged, Erno

  7. Azhar Ali Chaudhary October 1, 2013 / 8:13 pm

    Sir can i use my 16-35 f/2.8LII LENS for milky way galaxy &star trails thanks

  8. Nicole October 29, 2013 / 2:27 pm

    Thank you so much for this detailed list of instructions. I plan on taking your class on skill Before I do though I was wondering if taking these astrophotos with my canon powershot s100 would work?

    • inorman October 29, 2013 / 2:46 pm

      Nicole, the S100 will probably make it a little bit difficult to make astrophotographs due to its relatively small lens. It’s also ISO limited on its long exposure mode so you will need to install a firmware hack like CHDK (Canon Hack Development Kit) ( in order to enable high ISO, long exposure shooting. I have only seen this done by this guy: which actually seemed to create OK results. If hacking your camera doesn’t sound like your cup of tea, I would recommend saving up for a more capable camera. There are some affordable, new options out there. I recently got a Canon EOS-M on sale for about $350 with a 22mm f/2 lens which has turned out to be great for astrophotography.

      If you do decide to take the class, use the coupon code LOCAL20 for 20% off the class with this link:

  9. Nicole October 29, 2013 / 3:25 pm

    Aw bummer. I was looking forward to trying this out in a couple days when the clouds move out and the sky clears up. I guess I will have to start putting some money aside for a DSLR. Thank you for your timely response and the coupon code!!

  10. Mike March 24, 2014 / 1:15 pm

    An excellent guide. Everyone says you must have a fast lens. Am I right in thinking that this is because the assumption is that you need maximum light before getting star trails, i.e. using exposures up to a maximum of about 30 seconds? Am I right in thinking that If you are using a tracker (barn door or motorized) you can use much longer exposures, in which case doesn’t a slower lens become perfectly useable?

    • Ian Norman April 8, 2014 / 9:59 am

      Yes, a barn door tracker or motorized equatorial mount would be helpful in allowing longer exposures. However, one must remember that if they’re tracking the stars, the Earth will appear to move in the frame so it will concurrently blur the foreground of a landscape image. For simplicity, I think a fast lens is better than a barn door tracker.

  11. Alex April 9, 2014 / 2:04 am

    Great tips. I will visiting my home province in Philippines next week, that will be a perfect place to try photographing the milky way. I have only two choices to either use my Fuji x100 or my Nikkor kit lens. Do you think the X100 with an f2.0 lens is enough? I am aware that I might be having a problem with the not-so-wide lens of the x100, I may not be able to include more foregrounds with that. I will try to post results in my blog too. Thanks

    • Ian Norman April 9, 2014 / 4:54 am

      Alex, the x100 should be just fine. It is a little bit narrow so you will probably be limited to an exposure of about 14 seconds, f/2.0 and ISO 6400. using a 35mm equivalent lens like the x100s’ 23mm/2.0 is usually a good opportunity to stitch multiple images together in a panorama if you don’t think it’s wide enough. I’ll certainly want to see the results!

  12. Ben April 10, 2014 / 10:43 am

    Thanks for the tutorial! You mention that you use magic lantern with your 6D. Do you have any advice on which build to run and if there are any caveats or bugs to be aware of?

    • Ian Norman April 10, 2014 / 2:43 pm

      Ben, thanks for the kind words!

      I use the TragicLantern Builds available here:
      I usually update to the latest build about once a month.
      I’ve had my 6D crash exactly zero times but I use ML only for the intervalometer, AETTR, and bulb timer.
      On my EOS M, I’ve experimented with some of the other features and have experienced a locked up camera once or twice. Just remove the battery in that case.
      My recommendation is to go for it! It has really expanded the 6D’s versatility, especially for astrophotography and timelapse.

  13. Franz Scaramelli April 18, 2014 / 5:06 am

    Excellent article. Thanks so much for the information…..

Leave a Reply